Technology for Water

ENVIROCHEMIE

Arsenic elimination in industrial wastewater streams

David Londoño; Eva Gilbert

www.envirochemie.com

Contents

Company presentation

Possibilities for arsenic elimination from industrial wastewater streams

- Classical treatment processes
 - Flocculation/Coagulation
 - Adsorption
- Ionic exchange processes
- Membrane processes
 - Pressure driven
 - Electrically driven
- Eutectic Freeze Crystallization (EFC)

Source: Global healing center

Company presentation – EnviroChemie GmbH

Company presentation – Our services

A one-stop service

Possibilities for arsenic elimination

Flocculation - Coagulation

Classical method for Arsenic elimination

Three mechanisms responsible for the elimination:

- Precipitation of Iron arsenate
- Coprecipitation
- Adsorption to iron hydroxide

Use of other coagulants is possible

Flocculation - Coagulation

Different elimination grades for different ionic forms of arsenic:

- Arsenites As(III) Low separation grades (AsO_3^{3-})
- Arsenates As(V) Good separation grades (As O_4^{3-})

Flocculation - Coagulation

 \checkmark Elimination of As(III) \rightarrow Pre-oxidation of wastewater necessary

As(III) + Oxidant \rightarrow As(V)

- AOP (O₃, H₂O₂/UV, Fenton reaction)
- Chlorinated oxidants (hypochlorite, chlorine, chlorinated lime)
- Potassium permanganate
- Caroat (Potassium peroxymonosulfate)

Adsorption

Binding of arsenic to the polar surface of the adsorbent

Ion exchange

Use of strongly basic ion exchanger: Only by absence of other anions (NO₃⁻, SO₄²⁻). Regeneration with NaOH possible

 $3 \text{ R-OH} + \text{AsO}_4^{3-} \rightarrow \text{R}_3\text{AsO}_4 + 3 \text{ OH}^-$

Arsenic selective ion exchanger:

Hybrid materials:

Polymeric anion exchanger

✓ Doped with iron oxide (Goethite – FeOOH)

Source: Lanxess

Elimination of As(III) and As(V) is possible

Membrane filtration

Treatment option for various arsenic bearing sources water characteristics [136]

Source water	Treatme	nt option	Possible treatment		
	Filtration	n alone			
Characteristic	RO	NF	UF	MF ^a	Preoxidation ^b
As speciation					
As(III)	R	PE	NR	NR	R
As (V)	R	R	PE	NR	NR
As size distribution					
Dissolved	R	PE	NR	NR	NR
Particulate	NR	NR	PE	PE	NR
Co-occurrence					
NOM	PE	PE	NR	NR	NR
Inorganic	R	PE	NR	NR	NR

R, recommended; NR, not recommended; PE, possibly effective. ^aRemoval of other arsenic forms possible with ferric coagulants. ^bPreoxidation is considered as a pretreatment. Source: Shih (2005)

Membrane filtration

Arsenic form	Nanofiltration	Reverse osmosis
As (V)	95 - 99%	Up to 99 %
As (III)	75 – 99 %	Up to 99 %

Drawbacks:

- Higher costs (invest and energy costs)
- Discharge of concentrate
- → NF and RO only for cases when other dissolved solids have to be eliminated (sulfates, nitrates, carbonates ...) or for water recycling purposes

EnviroChemie has acquired experience with arsenic elimination in the following fields:

- Uranium mining remediation sites
- Metal processing
- Glass processing
- Landfill leachates

Rainwater treatment plant for a copper (cathodes) producer in Bulgaria

Wastewater composition

Parameter	Typical composition (extreme values)	Parameter	Typical composition (extreme values)
pH [-]	4,1	Pb [mg/l]	< 0,03
As [mg/l]	0,263 (1,482)	Ni [mg/l]	0,113
Fe [mg/l]	0,212	Mn [mg/l]	1,04
Cu [mg/l]	12,69	Co [mg/l]	0,034
Se [mg/l]	0,141	Mo [mg/l]	0,238
Zn [mg/l]	6,97	Cr [mg/l]	< 0,01
Cd [mg/l]	0,335	Sb [mg/l]	< 0,03

Achievable results

Thank you for your attention

0

0